Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301322, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135872

RESUMO

High-entropy oxides (HEOs) have been showing great promise in a wide range of applications. There remains a lack of clarity regarding the influence of nanostructure and composition on their Li storage performance. Herein, a dealloying technique to synthesize hierarchical nanoporous HEOs with tunable compositions is employed. Building upon the extensively studied quinary AlFeNiCrMnOx , an additional element (Co, V, Ti, or Cu) is introduced to create senary HEOs, allowing for investigation of the impact of the added component on Li storage performance. With higher specific surface areas and oxygen vacancy concentrations, all their HEOs exhibit high Li storage performances. Remarkably, the senary HEO with the addition of V (AlNiFeCrMnVOx ) achieves an impressive capacity of 730.2 mAh g-1 at 2.0 A g-1 , which surpasses all reported performance of HEOs. This result demonstrates the synergistic interaction of the six elements in one HEO nanostructure. Additionally, the battery cycling-induced reconstruction and cation diffusion in the HEOs is uncovered, which results in an initial capacity decrease followed by a subsequent continuous capacity increase and enhanced Li ion diffusion. The results highlight the crucial roles played by both nanoporous structure design and composition optimization in enhancing Li storage of HEOs.

2.
Nano Lett ; 23(22): 10554-10562, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37916621

RESUMO

Nanoporous high-entropy oxide (np-HEO) powders with tunable composition are integrated with a poly(vinylidene fluoride) network to create self-floating solar absorber films for seawater desalination. By progressively increasing the element count, we obtain an optimized 9-component AlNiCoFeCrMoVCuTi-Ox. Density functional theory (DFT) calculations reveal a remarkable reduction in its bandgap, facilitating the light-induced migration of electrons to conduction bands to generate electron-hole pairs, which recombine to produce heat. Simultaneously, the intricate light reflection and refraction pathways, shaped by the nanoporous structure, coupled with the reduced thermal conductivity attributed to the suboptimal crystalline quality of the np-HEO ensure an effective conversion of captured light into thermal energy. Consequently, all these films demonstrate an impressive absorbance rate exceeding 93% across the 250-2500 nm spectral range. Under one sun, the surface temperature of the 9-component film rapidly rises to 110 °C within 90 s with a high pure water evaporation rate of 2.16 kg m-2 h-1.

3.
Nanoscale ; 15(17): 7703-7709, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37039237

RESUMO

Understanding the growth and coarsening mechanisms of metal-organic framework (MOF) nanoparticles is crucially important for the design and fabrication of MOF materials with diverse functionalities and controllable stability. Oriented attachment (OA) growth is a common manner of MOF nanocrystal coarsening and agglomeration, but the underlying molecular mechanisms have not been well understood to date. Here we report the molecular-scale characterization of the OA interfaces of zeolitic imidazolate framework (ZIF) crystals by state-of-the-art low-dose aberration-corrected transmission electron microscopy. A series of OA interfaces with different molecular structures are captured, implying that multiple kinetic steps are involved in the OA growth of ZIF crystals from non-directional physical attractions between primary nanocrystals, lattice-aligned attachment of the ligand-capped nanocrystals, to coherent interfaces with perfect lattice alignment or stacking faults. It was found that the surface-capping organic ligands not only play an essential role in crystal lattice alignment by near-field directional interactions, but also dominate the interfacial reaction kinetics by interfacial diffusion-controlled elimination of excess surface-capping ligands. These observations provide molecular-scale insights into the OA growth mechanisms of ZIF crystals, which is important for engineering MOF crystal growth pathways by designing surface-capping ligands.

4.
Small ; 19(30): e2300612, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058090

RESUMO

Anchoring single metal atom to carbon supports represents an exceptionally effective strategy to maximize the efficiency of catalysts. Recently, dual-atom catalysts (DACs) emerge as an intriguing candidate for atomic catalysts, which perform better than single-atom catalysts (SACs). However, the clarification of the polynary single-atom structures and their beneficial effects remains a daunting challenge. Here, atomically dispersed triple Zn-Co-Fe sites anchored to nitrogen-doped carbon (ZnCoFe-N-C) prepared by one-step pyrolysis of a designed metal-organic framework precursor are reported. The atomically isolated trimetallic configuration in ZnCoFe-N-C is identified by annular dark-field scanning transmission electron microscopy and spectroscopic techniques. Benefiting from the synergistic effect of trimetallic single atoms, nitrogen, and carbon, ZnCoFe-N-C exhibits excellent catalytic performance in bifunctional oxygen reduction/evolution reactions in an alkaline medium, outperforming other SACs and DACs. The ZnCoFe-N-C-based Zn-air battery exhibits a high specific capacity (liquid state: 931.8 Wh kgZn -1 ), power density (liquid state: 137.8 mW cm-2 ; all-solid-state: 107.9 mW cm-2 ), and good cycling stability. Furthermore, density-functional theory calculations rationalize the excellent performance by demonstrating that the ZnCoFe-N-C catalyst has upshifted d-band center that enhances the adsorption of the reaction intermediates.

5.
Langmuir ; 39(11): 4190-4197, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36880648

RESUMO

Controlling the optical properties of metal plasma nanomaterials through structure manipulation has attracted great attention for solar steam generation. However, realizing broadband solar absorption for high-efficiency vapor generation is still challenging. In this work, a free-standing ultralight gold film/foam with a hierarchical porous microstructure and high porosity is obtained through controllably etching a designed cold-rolled (NiCoFeCr)99Au1 high-entropy precursor alloy with a unique grain texture. During chemical dealloying, the high-entropy precursor went through anisotropic contraction, resulting in a larger surface area compared with that from the Cu99Au1 precursor although the volume shrinkage is similar (over 85%), which is beneficial for the photothermal conversion. The low Au content also results in a special hierarchical lamellar microstructure with both micropores and nanopores within each lamella, which significantly broadens the optical absorption range and makes the optical absorption of the porous film reach 71.1-94.6% between 250 and 2500 nm. In addition, the free-standing nanoporous gold film has excellent hydrophilicity, with the contact angle reaching zero within 2.2 s. Thus, the 28 h dealloyed nanoporous gold film (NPG-28) exhibits a rapid evaporation rate of seawater under 1 kW m-2 light intensity, reaching 1.53 kg m-2 h-1, and the photothermal conversion efficiency reaches 96.28%. This work demonstrates the enhanced noble metal gold using efficiency and solar thermal conversion efficiency by controlled anisotropic shrinkage and forming a hierarchical porous foam.

6.
Sci Rep ; 13(1): 2362, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759551

RESUMO

Oxygen vacancy control has been one of the most efficient methods to tune the physicochemical properties of conventional oxide materials. A new conceptual multi-principal oxide (MPO) is still lacking a control approach to introduce oxygen vacancies for tuning its inherent properties. Taking multi-principal rare earth-transition metal (CeGdLa-Zr/Hf) oxides as model systems, here we report temperature induced oxygen vacancy generation (OVG) phenomenon in MPOs. It is found that the OVG is strongly dependent on the composition of the MPOs showing different degrees of oxygen loss in (CeGdLaZr)Ox and (CeGdLaHf)Ox under identical high temperature annealing conditions. The results revealed that (CeGdLaZr)Ox remained stable single phase with a marginal decrease in the band gap of about 0.08 eV, whereas (CeGdLaHf)Ox contained two phases with similar crystal structure but different oxygen vacancy concentrations causing semiconductor-to-metal like transition. Due to the intrinsic high entropy, the metallic atoms sublattice in (CeGdLaHf)Ox remains rather stable, regardless of the interstitial oxygen atoms ranging from almost fully occupied (61.84 at%) to almost fully empty (8.73 at%) state in the respective crystal phases. Such highly tunable oxygen vacancies in (CeGdLa-Zr/Hf) oxides show a possible path for band gap engineering in MPOs for the development of efficient photocatalysts.

7.
Mater Horiz ; 10(1): 122-135, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36317487

RESUMO

Green-solvent-processed perovskite solar cells (PSCs) have reached an efficiency of 20%, showing great promise in safe industrial production. However, the nucleation process in green-solvent-based deposition is rarely optimized, resulting in randomized crystallization and much lowered reported efficiencies. Herein, a nanostructured tin oxide nanorods (SnO2-NRs) substrate is utilized to prepare a high-quality formamidinium (FA)-based perovskite film processed from a green solvent of triethyl phosphate (TEP) with a low toxic antisolvent of dibutyl ether (DEE). Compared with SnO2 nanoparticles, the oriented SnO2-NRs can accelerate the formation of heterogeneous nucleation sites and retard the crystal growth process of the perovskite film, resulting in a high-quality perovskite film with uniform grain growth. Furthermore, a chlorine-terminated bifunctional supramolecule (Cl-BSM) is introduced to passivate the increasing interfacial defects due to the vast contact area in SnO2-NRs. Correspondingly, the substrate design of SnO2-NRs with Cl-BSM increases the power conversion efficiency (PCE) of green-solvent-processed PSCs to 22.42% with an open-circuit voltage improvement from 1.02 to 1.12 V, which can be attributed to the uniform grain growth and reduced carrier recombination at the SnO2-NRs/perovskite interface. More importantly, the photo and humidity stabilities of the unencapsulated device for up to 500 and 1000 hours are also achieved with negligible interfacial delamination after aging. This work provides a new perspective on the future industrial scale production of PSCs using environment-friendly solvents with compatible substrate design.

8.
ACS Nano ; 16(11): 19165-19173, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36355571

RESUMO

Mesoporous carbon supported non-noble metals, as promising catalysts for boosting the oxygen reduction reaction (ORR) in metal-air batteries, usually face challenges of low activity and performance degradation caused by the catalyst detachment from carbon substrates. Herein, a one-stone-two-birds strategy is reported to simultaneously improve the ORR activity and anchor nanosized MnS catalysts on a mesoporous carbon framework via nitrogen (N) and sulfur (S) dopants (MnS/NS-C). Synchrotron-based X-ray absorption spectroscopy (XAS) confirms the existence of Mn-N and Mn-S bonds, which firmly anchor active MnS nanoparticles. Density functional theory (DFT) calculations reveal that the N, S codoping lowers the d-band center of Mn and optimizes ORR intermediate adsorption. An excellent ORR performance (the onset and half-wave potential of 1.07 and 0.91 V) and long-term durability are achieved for MnS/NS-C in alkaline media. The flexible Al-air battery, using MnS/NS-C as the cathode catalyst, shows a power density of 134.6 mW cm-2 in comparison to the Pt/C-based counterpart of 106.2 mW cm-2. This study constructs a stable interaction with non-noble catalysts and carbon substrates for enhancing catalytic activity and durability in metal-air batteries.

9.
Chem Sci ; 13(41): 12056-12064, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36349094

RESUMO

Nanostructured high-entropy materials such as alloys, oxides, etc., are attracting extensive attention because of their widely tunable surface electronic structure/catalytic activity through mixing different elements in one system. To further tune the catalytic performance and multifunctionality, the designed fabrication of multicomponent high-entropy nanocomposites such as high-entropy alloy@high-entropy oxides (HEA@HEO) should be very promising. In this work, we design a two-step alloying-dealloying strategy to synthesize ultra-small HEA nanoclusters (∼2 nm) loaded on nanoporous HEO nanowires, and the compositions of both the HEA and HEO can be adjusted separately. To demonstrate this concept, a seven-component HEA (PtPdAuAgCuIrRu) clusters@seven-component HEO (AlNiCoFeCrMoTi)3O4 was prepared, which is highly active for both oxygen evolution and reduction reactions. Our comprehensive experimental results and first-principles density functional theory (DFT) calculations clearly show that better oxygen evolution reaction (OER) performance is obtained by optimizing the composition of the HEO support, and the seven-component HEA nanocluster is much more active for the ORR when compared with pure Pt due to the modified surface electronic structure. Specifically, the high-entropy composite exhibits an OER activity comparable to the best reported value, and the ORR activity exceeded the performance of commercial Pt/C in alkaline solutions with a record-low bifunctional ΔE of 0.61 V in 0.1 M KOH solution. This work shows an important route to prepare complex HEA@HEO nanocomposites with tuned catalytic performance for multifunctional catalysis and energy conversion.

10.
Nanomaterials (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145016

RESUMO

Lightweight polycrystalline ceramics possess promising physical, chemical, and mechanical properties, which can be used in a variety of important structural applications. However, these ceramics with coarse-grained structures are brittle and have low fracture toughness due to their rigid covalent bonding (more often consisting of high-angle grain boundaries) that can cause catastrophic failures. Nanocrystalline ceramics with soft interface phases or disordered structures at grain boundaries have been demonstrated to enhance their mechanical properties, such as strength, toughness, and ductility, significantly. In this review, the underlying deformation mechanisms that are contributing to the enhanced mechanical properties of superhard nanocrystalline ceramics, particularly in boron carbide and silicon carbide, are elucidated using state-of-the-art transmission electron microscopy and first-principles simulations. The observations on these superhard ceramics revealed that grain boundary sliding induced amorphization can effectively accommodate local deformation, leading to an outstanding combination of mechanical properties.

11.
Nano Lett ; 22(8): 3392-3399, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35435695

RESUMO

Heteronuclear double-atom catalysts, unlike single atom catalysts, may change the charge density of active metal sites by introducing another metal single atom, thereby modifying the adsorption energies of reaction intermediates and increasing the catalytic activities. First, density functional theory calculations are used to figure out the best combination by modeling two transition-metal atoms from Fe, Co, and Ni onto N-doped graphene. Generally, Fe and Co sites are highly active for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), respectively. The combination of Co and Fe to form CoFe-N-C not only further improves the Fe's ORR and Co's OER activities but also greatly enhances the Co site's ORR and Fe site's OER activities. Then, we synthesize the CoFe-N-C by a two-step pyrolysis process and find that the CoFe-N-C exhibits exceptional ORR and OER electrocatalytic activities in alkaline media, significantly superior to Fe-N-C and Co-N-C and even commercial catalysts.

12.
Small ; 18(17): e2200787, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344273

RESUMO

Zn-ion batteries (ZIBs) using aqueous electrolyte, recently, have been a hot topic owing to the high safety, low cost, and high specific energy capacity. However, the formation of dendrite and side reactions on the Zn anode during cycling inhibit the application of ZIBs. An advanced Zn anode by alloying a small amount of Li and Mn with Zn is hereby reported. It is found that Li and Mn can form cationic ions which restrain lateral diffusion of Zn ions and regulate zinc electrodeposition through the electrostatic shield mechanism. As a result, the formation of Zn dendrite is greatly inhibited. This process also mitigates the formation of Zn-based byproduct and Zn passivation. Consequently, the symmetric ZnLiMn/ZnLiMn cell presents a small overpotential of 30 mV at 1 mA cm-2 , greatly enhanced cycling durability (1000 h at a current density of 1 mA cm-2 ), and a dendrite-free morphology after cycles. Moreover, the authors find that the ZnLiMn alloy has greatly enhanced mechanical properties. The assembled ZnLiMn/MnO2 full cell can retain 96% capacity after 400 cycles at 1 C. Thus, the alloying low-cost Li/Mn strategy is very promising for large-scale production of dendrite-free Zn electrode in rechargeable ZIBs.

13.
Small ; 17(49): e2104684, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34738730

RESUMO

Single-atom cobalt-based CoNC are promising low-cost electrocatalysts for oxygen reduction reaction (ORR). However, further increasing the single cobalt-based active sites and the ORR activity remain a major challenge. Herein, an acetate (OAc) assisted metal-organic framework (MOF) structure-engineering strategy is developed to synthesize hierarchical accordion-like MOF with higher loading amount and better spatial isolation of Co and much higher yield when compared with widely reported polyhedron MOF. After pyrolysis, the accordion-structured CoNC (CoNC (A)) is loaded with denser CoN4 active sites (Co: 2.88 wt%), approximately twice that of Co in the CoNC reported. The presence of OAc in MOF also induces the generation of big pores (5-50 nm) for improving the accessibility of active sites and mass transfer during catalytic reactions. Consequently, the CoNC (A) catalyst shows an admirable ORR activity with a E1/2 of 0.89 V (40 mV better than Pt/C) in alkaline electrolytes, outstanding durability, and absolute tolerance to methanol in both alkaline and acidic media. The CoNC-based Zn-air battery exhibits a high specific capacity (976 mAh g-1 Zn ), power density (158 mW cm-2 ), rate capability, and long-term stability. This work demonstrates a reliable approach to construct single atom doped carbon catalysts with denser accessible active sites through MOF structure engineering.

14.
Nanoscale ; 13(24): 10862-10870, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34114571

RESUMO

Highly active, cost-effective and durable electrocatalysts for the oxygen reduction reaction (ORR) are critically important for renewable energy conversion and storage. Here we report a 3D bicontinuous nitrogen doped nanoporous graphene electrocatalyst co-anchoring with atomically dispersed nickel and copper atoms ((Ni,Cu)-NG) as a highly active single-atom ORR catalyst, fabricated by the combination of chemical vapor deposition and high temperature gas transportation. The resultant (Ni,Cu)-NG exhibits an exceptional ORR activity in alkaline electrolytes, comparable to the Pt-based benchmarks, from the synergistic effect of the CuNx and NiNx complexes. Endowed with high catalytic activity and outstanding durability under harsh electrochemical environments, rechargeable zinc-air batteries using (Ni,Cu)-NG as the cathodes show excellent energy efficiency (voltage gap of 0.74 V), large power density (150.6 mW cm-2 at 250 mA cm-2) and high cycling stability (>500 discharge-charge cycles at 10 mA cm-2). This study may pave an efficient avenue for designing highly durable single-atom ORR catalysts for metal-air batteries.

15.
Sci Rep ; 11(1): 8836, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893346

RESUMO

Discovery of advanced soft-magnetic high entropy alloy (HEA) thin films are highly pursued to obtain unidentified functional materials. The figure of merit in current nanocrystalline HEA thin films relies in integration of a simple single-step electrochemical approach with a complex HEA system containing multiple elements with dissimilar crystal structures and large variation of melting points. A new family of Cobalt-Copper-Iron-Nickel-Zinc (Co-Cu-Fe-Ni-Zn) HEA thin films are prepared through pulse electrodeposition in aqueous medium, hosts nanocrystalline features in the range of ~ 5-20 nm having FCC and BCC dual phases. The fabricated Co-Cu-Fe-Ni-Zn HEA thin films exhibited high saturation magnetization value of ~ 82 emu/g, relatively low coercivity value of 19.5 Oe and remanent magnetization of 1.17%. Irrespective of the alloying of diamagnetic Zn and Cu with ferromagnetic Fe, Co, Ni elements, the HEA thin film has resulted in relatively high saturation magnetization which can provide useful insights for its potential unexplored applications.

16.
Sci Adv ; 7(8)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33597237

RESUMO

The failure of superhard materials is often associated with stress-induced amorphization. However, the underlying mechanisms of the structural evolution remain largely unknown. Here, we report the experimental measurements of the onset of shear amorphization in single-crystal boron carbide by nanoindentation and transmission electron microscopy. We verified that rate-dependent loading discontinuity, i.e., pop-in, in nanoindentation load-displacement curves results from the formation of nanosized amorphous bands via shear amorphization. Stochastic analysis of the pop-in events reveals an exceptionally small activation volume, slow nucleation rate, and lower activation energy of the shear amorphization, suggesting that the high-pressure structural transition is activated and initiated by dislocation nucleation. This dislocation-mediated amorphization has important implications in understanding the failure mechanisms of superhard materials at stresses far below their theoretical strengths.

17.
Angew Chem Int Ed Engl ; 59(48): 21419-21424, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-32797696

RESUMO

The structural characterization of sublayer surfaces of MIL-101 is reported by low-dose spherical aberration-corrected high-resolution transmission electron microscopy (HRTEM). The state-of-the-art microscopy directly images atomic/molecular configurations in thin crystals from charge density projections, and uncovers the structures of sublayer surfaces and their evolution to stable surfaces regulated by inorganic Cr3 (µ3 -O) trimers. This study provides compelling evidence of metal-organic frameworks (MOFs) crystal growth via the assembly of sublayer surfaces and has important implications in understanding the crystal growth and surface-related properties of MOFs.

18.
Nano Lett ; 20(3): 1944-1951, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32069418

RESUMO

Understanding the formation and evolution of bicontinuous nanoporous structure during dealloying has been one of the most challenging subjects of dealloying research. However, previous in situ investigations either suffer from insufficient spatial resolution (e.g., X-ray tomography) or lack morphology visualization and mass information (e.g., scanning tunneling microscopy). In this work, we report the kinetics of the whole course of dealloying by utilizing liquid-cell aberration-corrected scanning transmission electron microscopy. With Z-contrast imaging analysis, the in situ sub-nanoscale characterization reveals two new phenomena, an initial period of dealloying indicative of an initial length scale for bulk dealloying and a large volume shrinkage in a nanoscale alloy precursor. We explain the particle-size-dependent volume shrinkage with the formation of a dense shell and quantify the dependence with a simple geometric model. These insights into the mechanisms of dealloying will enable deliberate designs of nanoporous structures.

19.
Nanoscale ; 11(18): 8727-8735, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31033993

RESUMO

We report experimental observation of room-temperature superplasticity and the distinct nanosize effect on the deformation mechanisms of Au nanowires. The Au nanowires were subjected to in situ tensile straining in a transmission electron microscope by using a home-made strain actuator, and a super large plastic strain with ∼150% uniform elongation and ∼260% total strain were observed before fracture. The plastic deformation started through full dislocation slip and was followed by the activities of stacking fault ribbons (or dissociated full dislocations) that were generated from surface sources and disappeared at the other end surfaces. With the reduction of the diameter of Au nanowires, the deformation changed to the twinning mode through partial dislocation emissions from sample surfaces. The mechanisms behind the observed phenomena are discussed in detail. These results shed light on the size-controlled plasticity of nano-metals.

20.
Phys Rev Lett ; 121(14): 145504, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339450

RESUMO

The recent observation of the reverse Hall-Petch relation in nanocrystalline ceramics offers a possible pathway to achieve enhanced ductility for traditional brittle ceramics via the nanosize effect, just as nanocrystalline metals and alloys. However, the underlying deformation mechanisms of nanocrystalline ceramics have not been well established. Here we combine reactive molecular dynamics (RMD) simulations and experimental transmission electron microscopy to determine the atomic level deformation mechanisms of nanocrystalline boron carbide (B_{4}C). We performed large-scale (up to ∼3 700 000 atoms) ReaxFF RMD simulations on finite shear deformation of three models of grain boundaries with grain sizes from 4.84 (135 050 atoms) to 14.64 nm (3 702 861 atoms). We found a reverse Hall-Petch relationship in nanocrystalline B_{4}C in which the deformation mechanism is dominated by the grain boundary (GB) sliding. This GB sliding leads to the amorphous band formation at predistorted icosahedral GB regions with initiation of cavitation within the amorphous bands. Our simulation results are validated by the experimental observations of an intergranular amorphous GB phase due to GBs sliding under indentation experiments. These theoretical and experimental results provide an atomistic explanation for the influence of GBs on the deformation behavior of nanocrystalline ceramics, explaining the reverse Hall-Petch relation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...